Sign Language Recognition using Machine Learning Approach
نویسندگان
چکیده
منابع مشابه
MAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL
Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...
متن کاملFilipino Sign Language Recognition using Manifold Learning
Sign Language is at the core of a progressive view of deafness as a culture and of deaf people as a cultural and linguistic minority. An in-depth study of Filipino Sign Language (FSL) is crucial in understanding the Deaf communities and the social issues surrounding them. Computer-aided recognition of sign language can help bridge the gap between signers and non-signers. In this paper, we propo...
متن کاملSign Language Recognition Using Kinect
An open source framework for general gesture recognition is presented and tested with isolated signs of sign language. Other than common systems for sign language recognition, this framework makes use of Kinect, a depth camera which makes real-time 3D-reconstruction easily applicable. Recognition is done using hidden Markov models with a continuous observation density. The framework also o ers ...
متن کاملSelf-directed-Learning for Sign Language Recognition
-This paper proposes a multi-classified and self-directed learning method used for sign language recognition, which adopts statistical template matching methods to recognize sign language. As sign language expressions consist of many frames, SIFT algorithm is used to position key frames and eigenvectors of sign language vocabulary. According to these key frames, the hierarchical discriminate re...
متن کاملLearning Language Using a Pattern Recognition Approach
A pattern recognition algorithm is described that learns a transition net grammar from positive examples. Two sets of examples-one in English and one in Chinese-are presented. It is hoped that language learning will reduce the knowledge acquisition effort for expert systems and make the natural language interface to database systems more transportable. The algorithm presented makes a step in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Research in Applied Science and Engineering Technology
سال: 2019
ISSN: 2321-9653
DOI: 10.22214/ijraset.2019.4154